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ABSTRACT

A space X is said to be κ-resolvable (resp., almost κ-resolvable) if it con-

tains κ dense sets that are pairwise disjoint (resp., almost disjoint over the

ideal of nowhere dense subsets). X is maximally resolvable if and only if

it is ∆(X)-resolvable, where ∆(X) = min{|G| : G 6= ∅ open}.

We show that every crowded monotonically normal (in short: MN)

space is ω-resolvable and almost µ-resolvable, where µ = min{2ω , ω2}.

On the other hand, if κ is a measurable cardinal then there is a MN space

X with ∆(X) = κ such that no subspace of X is ω1-resolvable.

Any MN space of cardinality < ℵω is maximally resolvable. But from

a supercompact cardinal we obtain the consistency of the existence of a

MN space X with |X| = ∆(X) = ℵω such that no subspace of X is

ω2-resolvable.
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1. ω-resolvability

For a topological space X we denote by D(X) the family of all dense subsets

of X and by N (X) the ideal of all nowhere dense sets in X . Given a cardinal

κ > 1, the space X is called κ-resolvable if and only if it contains κ many

disjoint dense subsets. We say that X is almost κ-resolvable if there are

κ many dense sets whose pairwise intersections are nowhere dense, that is,

we have {Dα : α < κ} ⊂ D(X)such that Dα ∩ Dβ ∈ N (X) if α 6= β. X

is maximally resolvable if and only if it is ∆(X)-resolvable, where ∆(X) =

min{|G| : G 6= ∅ open} is called the dispersion character of X . Finally, if X is

not κ-resolvable then it is also called κ- irresolvable.

The following simple but useful fact, in the case of κ-resolvability, was ob-

served by El’kin in [5].

Lemma 1.1: A space X is κ-resolvable (almost κ-resolvable) if and only if every

nonempty open set in X includes a nonempty (and open) κ-resolvable (almost

κ-resolvable) subset.

The aim of this paper is to investigate the (almost) resolvability properties of

monotonically normal spaces. Since the most important examples of monotoni-

cally normal spaces are metric and linearly ordered spaces that are all known to

be maximally resolvable, this aim seems to be both natural and justified to us.

We hope that our results, by turning out to be both surprising and nontrivial,

will also convince the reader about this.

Let us next recall the definition of monotonically normal spaces. For any

topological space X we write

M(X) =
{

〈x, U〉 ∈ X × τ(X) : x ∈ U
}

.

The elements of M(X) will be referred to as marked open sets. The space X is

called monotonically normal if and only if it is T1 and it admits a monotone

normality operator, that is a function H : M(X) → τ(X) such that

(1) x ∈ H(x, U) ⊂ U for each 〈x, U〉 ∈ M(X),

(2) if H(x, U) ∩ H(y, V ) 6= ∅ then x ∈ V or y ∈ U .

We call a set D in a space X strongly discrete if the points in D may

be separated by pairwise disjoint neighborhoods. It is well-known that in a

monotonically normal space any discrete subset is strongly discrete. On the

other hand, in [3] it was proved that every non-isolated point of a monotonically
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normal space is the accumulation point of a discrete subspace. Consequently,

one obtains the following result.

Theorem 1.2 ([3]): In a monotonically normal space any non-isolated point is

the accumulation point of some strongly discrete set.

Let us say that a space X is SD if it has the property described in Theorem

1.2, that is every non-isolated point of X is the accumulation point of some

strongly discrete set.

Theorem 1.3: Any crowded SD space X is ω-resolvable.

Proof. The SD property is clearly hereditary for open subspaces. Hence, by

Lemma 1.1, it suffices to prove that X includes an ω-resolvable subspace.

First we show that for every strongly discrete D ⊂ X there is a strongly

discrete E ⊂ X \ D such that D ⊂ E. Indeed, fix a neighbourhood assignment

Ud on D that separates D and for each d ∈ D pick a strongly discrete set

Ed ⊂ X \ {d} with d ∈ Ed. Then E =
⋃

d∈D(Ed ∩ Ud) is clearly as claimed.

Now pick an arbitrary point x ∈ X and set E0 = {x}. Using the above claim,

for each n < ω we can inductively define a strongly discrete set En+1 ⊂ X \En

such that En ⊂ En+1. Since
⋃

i≤n Ei ⊂ En, the sets {En : n < ω} are pairwise

disjoint. Let us finally set E =
⋃

{En : n < ω}. It is clear from our construction

that if I ⊂ ω is infinite then
⋃

{En : n ∈ I} is dense in E, so the subspace E of

X is obviously ω-resolvable.

Corollary 1.4: Every crowded monotonically normal space is ω-resolvable.

2. H-sequences and almost resolvability

The main result of the previous section, namely that (crowded) monotonically

normal spaces are ω-resolvable, used very little of the particular structure pro-

vided by monotone normality. In this section we shall describe a procedure on

monotonically normal spaces that is quite specific in this respect and so, not

surprisingly, it leads to some stronger (almost) resolvability results. This pro-

cedure had been originated (in a different form) by S. Williams and H. Zhou in

[13].

Definition 2.1: Let H be a monotone normality operator on a space X . A family

E ⊂ M(X) of marked open sets is said to be H- disjoint if for any two members
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〈x, U〉, 〈y, V 〉 of E we have H(x, U)∩H(y, V ) = ∅. Clearly, if E is H-disjoint then

D(E) = {x : ∃U with 〈x, U〉 ∈ E} is (strongly) discrete.

By Zorn’s lemma, for every open set G in X we can fix a maximal H-disjoint

family E(G) ⊂ M(G) with the additional property that U ⊂ G whenever

〈x, U〉 ∈ E(G). The maximality of E(G) implies that
⋃

{H(x, U) : 〈x, U〉 ∈ E(G)}

is a dense open subset of G.

With the help of the above defined operator E(G) we may now describe our

basic procedure as follows.

Definition 2.2: A sequence 〈Eα : α < δ〉 is called a completed H-sequence of X

if and only if

(1) E0 = E(X);

(2) for each α < δ we have

Eα+1 =
⋃

{

E
(

H(x, U)\{x}
)

: 〈x, U〉 ∈ Eα

}

;

(3) if α < δ is a limit ordinal then the family

Wα = {W ∈ τ(X) : ∀β < α ∃〈x, U〉 ∈ Eβ with W ⊂ U}

is a π-base in X (or, equivalently, its union ∪Wα is dense in X) and

Eα is a maximal H-disjoint collection of marked open sets 〈y, V 〉 with

V ∈ Wα;

(4) the family

Wδ = {W ∈ τ(X) : ∀β < δ ∃〈x, U〉 ∈ Eβ with W ⊂ U}

is not a π-base in X .

The reader may convince himself by a straight-forward transfinite induction

that the following fact is valid.

Fact 2.3: Every crowded monotonically normal space X , with monotone nor-

mality operator H, admits a completed H-sequence 〈Eα : α < δ〉 where δ is

necessarily a limit ordinal.

We introduce now some notation concerning a given completed H-sequence

〈Eα : α < δ〉 of X . For any ordinal α < δ we put Dα = D(Eα) and Hα =
⋃

{H(x, U) : 〈x, U〉 ∈ Eα}. It is clear from our definitions that each Hα is dense
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open in X , moreover, β < α < δ implies that Hβ ⊃ Hα and Dβ ∩ Hα = ∅.

If I ⊂ δ is a set of ordinals we write D[I] =
⋃

{Dα : α ∈ I}. Finally, we set

V = X \ ∪Wδ, then V is a nonempty open set in X .

Lemma 2.4: If I is bounded in δ then D[I] is nowhere dense in X . However, if

I is unbounded in δ then D[I] is dense in V , that is we have V ⊂ D[I].

Proof. The first part is obvious because I ⊂ α < δ implies D[I] ∩ Hα = ∅.

Assume now that I is cofinal in δ but, arguing indirectly, for some G ∈ τ∗(V )

we have G ∩ D[I] = ∅. Pick any point z ∈ G, we claim that then, for all α < δ

and 〈x, U〉 ∈ Eα, H(x, U) ∩ H(z, G) 6= ∅ implies z ∈ H(x, U).

Indeed, if β ∈ (α, δ) ∩ I then there is 〈x′, U ′〉 ∈ Eβ with

H(x′, U ′) ∩ H(x, U) ∩ H(z, G) 6= ∅,

because Hβ is dense in X . It follows that U ′ ⊂ H(x, U), hence x′ /∈ G as x′ ∈ Dβ

and G ∩ Dβ = ∅. But then H(x′, U ′) ∩ H(z, G) 6= ∅ implies z ∈ U ′ ⊂ H(x, U).

The sets {H(x, U) : 〈x, U〉 ∈ Eα} being pairwise disjoint, it follows that for

each α < δ there is exactly one 〈xα, Uα〉 ∈ Eα such that

H(xα, Uα)∩H(z, G) 6= ∅. But then H(z, G) ⊂ H(xα, Uα) ⊂ Uα whenever α < δ,

consequently

H(z, G) ⊂ Uα+1 ⊂ Uα

as well. This, however, would imply H(z, G) ∈ Wδ, contradicting that H(z, G) ⊂

G ⊂ V.

We may now give the main result of this section.

Theorem 2.5: Any crowded monotonically normal space X is almost

min(c, ω2)-resolvable. So X is almost ω1-resolvable, and even almost ω2-re-

solvable if the continuum hypothesis (CH) fails.

Proof. By Lemma 1.1 it suffices to show that some nonempty open V ⊂ X

satisfies this property. To see this, let us consider a completed H-sequence

〈Eα : α < δ〉 of X . Let I be a cofinal subset of δ of order type cf(δ) and

{Iζ : ζ < µ} be an almost disjoint subfamily of [I]cf(δ), where µ = 2ω = c if

cf(δ) = ω and µ = cf(δ)+ ≥ ω2 if cf(δ) > ω. Then the family {D[Iζ ] : ζ < µ}

witnesses that V is almost µ-resolvable.

Since almost ω-resolvability is clearly equivalent to ω-resolvability, Theo-

rem 2.5 provides us a new proof of Corollary 1.4.
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3. Spaces from trees and ultrafilters

Since the prime examples of monotonically normal spaces, namely metric and

ordered spaces, are all maximally resolvable, the results of the two preceding

sections seem rather modest. The main aim of this section is to show that, at

least, modulo some large cardinals, nothing stronger than ω-resolvability can

be expected of a monotonically normal space X , even if its dispersion character

∆(X) is large. The examples that show this have actually been around but,

as far as we know, the fact that they are monotonically normal has not been

noticed.

The underlying set of such a space is an everywhere infinitely branching

tree 〈T, <〉. This simply means that for each t ∈ T the set St of all immediate

successors of t in T is infinite. The height of such a tree is obviously a limit

ordinal. (In fact, nothing is lost if we only consider trees of height ω.) By a

filtration on T we mean a map F with domain T that assigns to every t ∈ T

a filter F (t) on St such that every cofinite subset of St belongs to F (t) (that is,

F (t) extends the Fréchet filter on St).

Definition 3.1: Assume that F is a filtration on an everywhere infinitely branch-

ing tree 〈T, <〉. A topology τF is then defined on T by

τF = {V ⊂ T : ∀t ∈ V
(

V ∩ St ∈ F (t)
)

},

and the space 〈T, τF 〉 is denoted by X(F ).

Theorem 3.2: Let F be a filtration on an everywhere infinitely branching tree

〈T, <〉. Then the space X(F ) is monotonically normal.

Proof. That τF is indeed a topology that satisfies the T1 separation axiom is

obvious and well-known. The novelty is in showing that X(F ) is monotonically

normal.

To this end we define H(s, V ) for s ∈ V ∈ τF as follows:

H(s, V ) = {t ∈ V : s ≤ t and [s, t] ⊂ V }.

Of course, here [s, t]={r : s ≤ r≤ t}. Clearly, H(s, V )∈ τF and s∈ H(s, V ) ⊂ V .

Next, assume that t ∈ H(s1, V1) ∩ H(s2, V2). Then s1, s2 ≤ t implies that

s1 and s2 are comparable, say s1 ≤ s2. But then we have s2 ∈ [s1, t] ⊂ V1,

consequently H is indeed a monotone normality operator on X(F ).
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Of special interest are those filtrations F for which F (t) is a (free) ultrafilter

on St for all t ∈ T . Such an F will be called an ultrafiltration. In this case

we have a convenient way to determine the closures of sets in the space X(F )

that will be put to good use later.

Definition 3.3: For every set A ⊂ T we define

C(A) = A ∪ {t ∈ T : St ∩ A ∈ F (t)}.

Then by transfinite recursion we define Cα(A) for all ordinals α by Cα+1(A) =

C(Cα(A)) for successors and Cα(A) =
⋃

{Cβ : β < α} for α limit.

Lemma 3.4: Let F be an ultrafiltration on the tree T . Then a set B ⊂ T is

closed in X(F ) if and only if B = C(B). Consequently, for any subset A ⊂ T

there is an ordinal α < |T |+ with A = Cα(A).

Proof. First, if B = C(B) then for each t ∈ T \B we have St ∩ B /∈ F (t),

hence St\B ∈ F (t) because F (t) is an ultrafilter. Then T \B is open by the

definition of τF , hence B is closed. Conversely, if B is closed in X(F ) then for

each t ∈ T \B we have St\B ∈ F (t), hence St ∩B /∈ F (t), that is t /∈ C(B). But

this means that B = C(B).

Next, C(A) ⊂ A is obvious, and then by induction we get Cα(A) ⊂ A for

all α. But for some α < |T |+ we must have C(Cα(A)) = Cα(A), and then

A = Cα(A) for Cα(A) is closed by the above.

Let u be an ultrafilter on a set I and λ be a cardinal. u is said to be λ-

descendingly complete if and only if
⋂

{Xξ : ξ < λ} ∈ u for each decreasing

sequence {Xξ : ξ < λ} ⊂ u. The ultrafilter u is called λ-descendingly in-

complete if and only if it is not λ-descendingly complete. For example, u is

countably complete exactly if it is ω-descendingly complete.

We shall need the following old result of Kunen and Prikry in our next irre-

solvability theorem for spaces obtained from certain ultrafiltrations.

Theorem (Kunen, Prikry, [10]): If λ is a regular cardinal and u is a λ-descen-

dingly complete ultrafilter (on any set) then u is also λ+-descendingly complete.

Theorem 3.5: Assume that F is an ultrafiltration on T and λ is a regular

cardinal such that F (t) is λ-descendingly complete for all t ∈ T . Then the

space X(F ) is hereditarily λ+-irresolvable (that is, no subspace of X(F ) is

λ+-resolvable).
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Proof. First we show that for every set A ⊂ T we have A = Cλ(A). By Lemma

3.4 it suffices to show that C(Cλ(A)) = Cλ(A).

Indirectly assume that t ∈ C(Cλ(A))\Cλ(A), then we must have Cλ(A)∩St ∈

F (t). But

Cλ(A) ∩ St =
⋃

α<λ

Cα(A) ∩ St

where the right-hand side is an increasing union, hence there is an α < λ with

Cα(A) ∩ St ∈ F (t) because F (t) is λ-descendingly complete. This implies that

t ∈ Cα+1(A) ⊂ Cλ(A), a contradiction.

Let us now consider an indexed family of sets F = {Fi : i ∈ I}. We are going

to use the following notation:

ord(x,F) = |{i ∈ I : x ∈ Fi}|

and

ord(F) = sup{ord(x,F) : x ∈ ∪i∈IFi}.

Instead of the statement of the theorem we shall prove the following much

stronger claim.

Lemma 3.6: If D = {Di : i ∈ I} is any indexed family of subsets of T with

ord(D) ≤ λ then ord({Di : i ∈ I}) ≤ λ as well.

Proof. We shall prove, by induction on α ≤ λ, that ord(Dα) ≤ λ where

Dα = {Cα(Di) : i ∈ I}.

First we show that ord(D1) ≤ λ, this will clearly take care of all the successor

steps.

Assume, indirectly, that ord(t,D1) ≥ λ+ for some t ∈ T , then we may find a

set J ∈ [I]λ
+

such that t ∈ C(Dj)\Dj , hence Dj ∩ St ∈ F (t), for each j ∈ J .

By the theorem of Kunen and Prikry the ultrafilter F (t) is also λ+-descen-

dingly complete. Consequently, using a standard argument, one can show that

there is an L ∈
[

J
]λ+

such that

⋂

{Dj ∩ St : j ∈ L} 6= ∅.

But this clearly contradicts ord(D) ≤ λ.

Next assume that α ≤ λ is a limit ordinal and the inductive hypothesis holds

for all β < α. But now for each index i ∈ I we have Cα(Di) =
⋃

β<α Cβ(Di),
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hence

ord(t,Dα) ≤
∑

β<α

ord(t,Dβ) ≤ |α| · λ = λ

whenever t ∈ T , and so ord(Dα) ≤ λ.

It follows immediately from Lemma 3.6 that if {Ai : i ∈ λ+} are pairwise

disjoint nonempty subsets of T then the closures Ai cannot all be the same and

so no subspace of X(F ) can be λ+-resolvable.

Corollary 3.7: If F is an ultrafiltration on T such that F (t) is countably com-

plete for each t ∈ T then X(F ) is ω-resolvable but hereditarily ω1-irresolvable.

In particular, if κ is a measurable cardinal then there is a monotonically normal

space X with |X | = ∆(X) = κ that is hereditarily ω1-irresolvable.

The question if ω-resolvable spaces are also maximally resolvable was raised

a long time ago by Ceder and Pearson in [2], and has just recently been set-

tled completely in [8] (negatively). Corollary 3.7 yields a monotonically normal

counterexample to this problem, from a measurable cardinal. Another coun-

terexample from a measurable cardinal was found by Eckertson in [4], however,

that example is not monotonically normal. We present two arguments to show

this. First, Eckertson’s example contains a crowded irresolvable subspace, hence

it cannot be monotonically normal by corollary 1.4.

The second argument is based on our following observation that may have

some independent interest. First we need some notation. If κ ≤ λ are cardinals

we let τλ
κ denote the < κ box product topology on 2λ (generated by the base

{[f ] : f ∈ Fn(λ, 2; κ}, where [f ] = {x ∈ 2λ : f ⊂ x}), moreover we set

Cλ,κ =
〈

2λ, τλ
κ

〉

.

Theorem 3.8: If κ<κ = κ < λ then no dense subspace of Cλ,κ is monotonically

normal.

Proof of 3.8. Let X be dense in Cλ,κ and θ be a large enough regular cardi-

nal. Let M be an elementary submodel of 〈H(θ),∈,≺〉 (where H(θ) is the

family of sets hereditarily of size < θ and ≺ is a well-ordering of H(θ)) such

that |M| = κ and
[

M
]<κ

⊂ M, moreover X, κ, λ ∈ M. Note that then

Fn(
[

M∩ λ
]<κ

, 2; κ) ⊂ M as well.
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Assume that X is monotonically normal and let H ∈ M be a monotone

normality operator on X . We can assume that H(x, [s] ∩ X) is the trace on X

of a basic open set for each basic open set [s].

Let I = M∩ λ and pick α ∈ λ \ I. F = {f � I : f ∈ M∩X} is clearly dense

in the subspace 2I of Cλ,κ. Let Fi = {f � I : f ∈ X ∩M∧ f(α) = i} for i ∈ 2

then F = F0 ∪ F1 so there is i ∈ 2 and s ∈ Fn(I, 2; κ) such that Fi is dense in

2I ∩ [s] ∩ X .

Let b = s∪{〈α, 1 − i〉} and pick x ∈ X ∩ [b]. Next, let H(x, [b]∩X) = [b′]∩X

and b′′ = b′ � I. Fix b′′′ ∈ Fn(I, 2; κ) such that b′′′ ⊃ b′′ and x /∈ [b′′′]. Since Fi

is dense in 2I ∩ [s] ∩ X we can pick y ∈ X ∩M∩ [b′′′] such that y(α) = i. Let

[u] ∩ X = H(y, [b′′′] ∩ X). Then domu ⊂ I because H, b′′′, y ∈ M.

Since x /∈ [b′′′] and y /∈ [b] it follows that H(x, [b]) ∩ H(y, [b′′′]) =

[u] ∩ [b′] ∩ X = ∅. However supp u ⊂ I and u ⊃ b′′′ ⊃ b′′ = b′ � I, so u

and b′ are compatible functions of size < κ, i.e., [u]∩ [b′] is a nonempty open set

in
〈

2λ, τλ
κ

〉

. Since X is dense we have [u] ∩ [b′] ∩ X 6= ∅, a contradiction.

Now, Eckertson’s example obtained from a measurable cardinal κ contains

a subspace homeomorphic to a dense subspace of C2κ,κ , hence it cannot be

monotonically normal by Theorem 3.8 because κ<κ = κ.

Of course, we have a space like in Corollary 3.7 if and only if there is a

measurable cardinal. Also, the cardinality (and dispersion character) of such a

space is at least as large as the first measurable. But can we have an example

of a monotonically normal and not maximally resolvable space that is much

smaller? The answer to this question is, consistently, affirmative but, ironi-

cally, it requires the existence of a large cardinal that is much stronger than a

measurable.

Theorem (Magidor, [11]): It is consistent from a supercompact cardinal that

there is an ω1-descendingly complete uniform ultrafilter on ℵω.

We would like to emphasize that in [1] a slightly weaker result was given in

which ℵω is replaced with ℵω+1. However, Magidor pointed out to us that the

method of [1] yields the above stronger version as well. From Magidor’s theorem

and from Theorem 3.5 we immediately obtain our promised result.

Corollary 3.9: From a supercompact cardinal it is consistent to have a

monotonically normal space X with |X | = ∆(X) = ℵω that is hereditarily

ω2-irresolvable (hence not maximally resolvable).
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Of course, from [1] we could conclude the slightly weaker result in which ℵω

is replaced with ℵω+1.

But can we do even better and go below ℵω? The answer to this question

is, maybe surprisingly, negative. We are going to show that any monotonically

normal space of cardinality less than ℵω is maximally resolvable. The proof of

this result will be based on showing that all spaces of the form X(F ) with F

an ultrafiltration on the tree Seqκ = κ<ω of all finite sequences of ordinals less

than κ are maximally resolvable provided that κ < ℵω. The first result to this

effect, for constant ultrafiltrations on Seqωn, was obtained by László Hegedüs

in his Master’s Thesis [6]. Of course, by a constant ultrafiltration we mean one

for which F (t) is the “same” ultrafilter for all t ∈ T .

Now, let κ be an arbitrary infinite cardinal. A nonempty subset T of Seqκ

is called a subtree of Seq κ if and only if t � n ∈ T whenever t ∈ T and n < |t|.

For any subset A of Seq κ we shall write min A to denote the set of all minimal

elements of A (with respect to the tree ordering on Seqκ, of course).

If F is a filtration on Seq κ and v ∈ Seq κ we shall denote by Fv the derived

filtration on Seqκ defined by the formula Fv(s) = F (v_s).

Assume now that S and {Tv : v ∈ Seq κ} are subtrees of Seqκ. We then

define their “sum” by

S ⊕ {Tv : v ∈ Seq κ} = S ∪ {v_t : v ∈ min(Seq κ \ S) ∧ t ∈ Tv}.

Obviously, this sum is again a subtree of Seq κ.

If moreover f and g = {gv : v ∈ Seq κ} are functions with dom f = S and

dom gv = Tv then we define f ⊕ {gv : v ∈ Seq κ} = f ⊕ g by putting

dom(f ⊕ g) = S ⊕ {Tv : v ∈ Seq κ}

and

(f ⊕ g)(x) =







f(x) for x ∈ S

gv(t) for x = v_t with v ∈ min(Seq κ \ S), t ∈ T .

A subtree of Seqκ is called well-founded if and only if it does not possess

any infinite branches. Note that if S and {Tv : v ∈ Seqκ} are all well-founded

then so is S ⊕ {Tv : v ∈ Seq κ}.

Now let 0 < λ ≤ κ be cardinals and F be a filtration on Seqκ. We say that

a function f is λ-good for F if and only if dom f is a well-founded subtree of
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Seq κ, moreover f [V ] = λ whenever V is open in X(F ) with ∅ ∈ V . As an easy

(but useful) illustration of this concept we present the following result.

Lemma 3.10: For each 0 < n < ω and for any filtration F on κ there is a

function f which is n-good for F .

Proof. Let dom f = {s ∈ Seq κ : |s| < n} and f(s) = |s|.

The next result shows the relevance of these concepts to resolvability.

Theorem 3.11: Let F be an filtration on Seq κ. If there are λ-good functions

fs for Fs for all s ∈ Seqκ then X(F ) is λ-resolvable.

Proof. Define the sequence of functions g0, g1, . . . by recursion as follows:

g0 = f∅ and gn+1 = gn ⊕ {fs : s ∈ Seqκ} for n < ω. It is easy to check

that then gω =
⋃

n<ω gn maps Seqκ to λ, i.e. dom gω = Seq κ. Indeed, if

s ∈ Seqκ with |s| = n then there is a k ≤ n with s ∈ dom gk.

We show next that gω[V ] = λ holds for any nonempty open set V in X(F ).

Let n be such that V ∩ dom gn 6= ∅ and pick v ∈ V ∩ dom gn. Clearly, there is

an extension s of v with s ∈ V ∩ min(Seq κ \ dom gn). Now let

W = {t ∈ Seqκ : s_t ∈ V }

then ∅ ∈ W and W is open in X(Fs), hence fs[W ] = λ because fs is λ-good

for Fs. But we clearly have gω(s_t) = fs(t) for all t ∈ dom fs, hence we have

gω[V ] = λ as well.

But then {g−1
ω (α) : α < λ} is a pairwise disjoint family of dense sets in

X(F ).

The following stepping-up type result will turn out to be very useful.

Lemma 3.12: Assume that F is a filtration on Seqκ such that F (∅) is

λ-descendingly incomplete, moreover, for every cardinal µ < λ and every or-

dinal α < κ there is a µ-good function fα
µ for F〈α〉. Then there is a λ-good

function f for F .

Proof. Fix a continuously decreasing sequence {Xξ : ξ < λ} ⊂ F (∅) with empty

intersection. For any ordinal ν < λ let us put Iν = Xν\Xν+1, then we clearly

have κ =
⋃

{Iν : ν < λ}. For each 0 < ν < λ fix a map hν : |ν|
onto
→ ν.
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We now define the desired map f with the following stipulations:

dom f = {∅} ∪
⋃

ν<λ

{〈α〉_ t : α ∈ Iν and t ∈ dom fα
|ν|} ,

and for s ∈ dom f

f(s) =







0 if s = ∅ ,

hν(fα
|ν|(t)) if s = 〈α〉_ t with α ∈ Iν , t ∈ dom fα

|ν| .

Clearly, f is well-defined and dom f is well-founded. If V is open in X(F )

with ∅ ∈ V then we have V ∩ S∅ ∈ F (∅) and hence

sup{ν : ∃α ∈ Iν with 〈α〉 ∈ V } = λ.

But 〈α〉 ∈ V and α ∈ Iν imply fα
|ν|[{s : 〈α〉_ s ∈ V }] = |ν| and so f [V ] ⊃ ν,

hence we have f [V ] = λ.

Theorem 3.13: Let F be a filtration on Seq κ and λ be an infinite cardinal

such that F (t) is µ-descendingly incomplete whenever t ∈ Seq κ and ω ≤ µ ≤ λ.

Then there are λ-good functions for all the derived filtrations Fs and hence

X(F ) is λ-resolvable.

Proof. The proof goes by a straight-forward induction on λ, using Lemma 3.12

and the fact that our assumption on F is automatically valid also for all the

derived filtrations Fs. The starting case λ = ω also uses Lemma 3.10. The last

statement is immediate from Theorem 3.11.

A uniform ultrafilter on κ is trivially κ-descendingly incomplete. So if

κ = ωn < ℵω, then it follows by n repeated applications of the above mentioned

result of Kunen and Prikry that any uniform ultrafilter on κ is µ-descendingly

incomplete for all µ with ω ≤ µ ≤ κ. Thus we get from Theorem 3.13 the

following result.

Corollary 3.14: Assume that κ < ℵω and F is any uniform ultrafiltration on

Seq κ (i.e. F(t) is uniform for all t ∈ Seq κ). Then the space X(F ) is κ-resolvable.

We now recall a definition from [9], see also [12].

Definition 3.15: Let X be a space and µ be an infinite cardinal number. We

say that x ∈ X is a Tµ point of X if for every set A ∈ [X ]<µ there is some

B ∈ [X\A]<µ such that x ∈ B. We shall use Tµ(X) to denote the set of all Tµ

points of X .
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The following result is an easy consequence of Lemma 1.3 from [9]. In the

particular case when µ is a successor cardinal it follows from Proposition 2.1 of

[12].

Lemma 3.16: If |X | = µ is a regular cardinal and Tµ(X) is dense in X then X

is µ-resolvable.

This result will enable us to transfer certain results from spaces of the form

X(F ), where F is a uniform ultrafiltration on Seqκ for some regular cardinal

κ, to monotonically normal and even more general spaces.

Let us recall from Section 1 that every monotonically normal space is SD. In

fact, as monotone normality is a hereditary property, it is even hereditarily SD

(in short: HSD). We shall need below a property that is strictly between SD and

HSD, namely that all dense subspaces are SD, we shall denote this property

by DSD. It can be shown that the Čech-Stone remainder ω∗, for instance, is

DSD but not HSD.

Theorem 3.17: Assume that κ = cf(κ) ≥ λ. Then the following are equivalent.

(1) If X is a DSD space with |X | = ∆(X) = κ then X is λ-resolvable.

(2) If X is a MN space with |X | = ∆(X) = κ then X is λ-resolvable.

(3) For every uniform ultrafiltration F on Seq κ the space X(F ) is λ-resolvable.

Proof. Of course, only (3) ⇒ (1) requires proof. So assume (3) and consider a

DSD space X with |X | = ∆(X) = κ. If Tκ(X) is dense in X then, by Lemma

3.16 X is even κ-resolvable and we are done.

Otherwise, in view of Lemma 1.1, we may assume that actually Tκ(X) = ∅.

In this case, for every point x ∈ X there is a set Ax ∈ [X ]<κ such that x ∈ Ax

and for Dx = X\Ax no B ∈ [Dx]<κ has x in its closure. Note that by ∆(X) = κ

each Dx is dense in X .

But X is DSD, hence for every x there is a strongly discrete set Sx ⊂ Dx

with x ∈ Sx. (Note that S ⊂ Dx is strongly discrete in Dx if and only if it is so

in X for Dx is dense.)

Next, by recursion on |t| , we define points xt and open sets Ut in X as follows.

First pick any point x∅ ∈ X = U∅. If xt ∈ Ut has been defined then fix a one-

to-one enumeration of Sxt
∩Ut = {xt_α : α < κ} and choose {Ut_α : α < κ} to

be pairwise disjoint open neighbourhoods of them, all contained in Ut. Clearly,

then the map h : Seq κ → X that maps t to h(t) = xt is injective.
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Next, for any t ∈ Seqκ extend the trace of the neighbourhood filter of xt on

Sxt
∩Ut to an ultrafilter ut and define F (t) = h−1[ut], which is an ultrafilter on

St = {t_α : α < κ}. It follows from our assumptions that every F (t) is uniform

and therefore X(F ) is λ-resolvable. But the subspace topology on h[Seq κ] in

X is clearly coarser than the h-image of τF , hence it is also λ-resolvable. By

Lemma 1.1, this completes our proof.

Corollary 3.18: Let X be any DSD space of cardinality < ℵω. Then X is

maximally resolvable. In particular, all MN spaces of size < ℵω are maximally

resolvable.

Proof. Clearly, every open set U in X includes another open set V such that

|V | = ∆(V ). But every open subspace of a DSD space is again DSD, so Theorem

3.17 and Corollary 3.14 imply that V is |V |-resolvable. But ∆(X) ≤ |V |, hence

each such V is ∆(X)-resolvable and so, in view of Lemma 1.1, X is maximally

resolvable.

We conclude by listing a few open problems that we find especially interesting.

Problem 3.19: (1) Is there a ZFC example of a monotonically normal space

that is not maximally resolvable?

(2) Is it consistent to have a monotonically normal space X of cardinality less

than the first measurable such that ∆(X) > ω but X is not ω1-resolvable?

(3) Is every crowded monotonically normal space almost c-resolvable?

Concerning problem (3) we have the following (very) partial result: Every

countable crowded DSD space is almost c-resolvable.
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discrete subspaces, Glasnik Matematički. Serija III 37(57) (2002), 187–210.

[4] F. W. Eckertson, Resolvable, not maximally resolvable spaces, Topology and its Applica-

tions 79 (1997), 1–11.

[5] A. G. El’kin, Resolvable spaces which are not maximally resolvable, Vestnik Moskovskogo

Universiteta. Seriya I. Matematika. Mekhanika 24 (1969), 66–70.
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[6] L. Hegedűs, Szűrők és Lyukak, Master’s Thesis, in Hungarian, Eötvös Loránd University,
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